

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

AGRICULTURAL TECHNOLOGY

2019

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 15 pages.

SECTION A

QUESTION 1

1.1	1.1.1	C		(2)
	1.1.2	D✓✓		(2)
	1.1.3	A✓✓		(2)
	1.1.4	B√√		(2)
	1.1.5	B√√		(2)
	1.1.6	A✓✓		(2)
	1.1.7	C✓✓		(2)
	1.1.8	B√√		(2)
	1.1.9	B√√		(2)
	1.1.10	B√√		(2)
			(10 x 2)	(20)
1.2	1.2.1	Shield✓✓		(2)
	1.2.2	Metal✓✓		(2)
	1.2.3	Geothermal√√		(2)
	1.2.4	Teflon✓✓		(2)
	1.2.5	Tin√√		(2)
			(5 x 2)	(10)
1.3	1.3.1	D✓✓		(2)
	1.3.2	F√√		(2)
	1.3.3	G√√		(2)
	1.3.4	E√√		(2)
	1.3.5	C√√		(2)
			(5 x 2)	(10)

Copyright reserved Please turn over

TOTAL SECTION A:

40

SECTION B

QUESTION 2: MATERIALS AND STRUCTURES

- 2.1 THREE influences that nickel, as an alloy element, has on stainless steel.
 - It improves the amount of toughness and the hardening ability.
 - It gives steel a fair amount of toughness at low temperatures.
 - Used with chromium, nickel helps to increase the hardening ability of steel.√
 - Steel, alloyed with chromium and nickel, is resistant to air.
 - Resistant to water.✓
 - Resistant to many types of chemicals, acids and alkalis.

(Any 3) (3)

- 2.2 2.2.1 THREE applications of brass on the farm.
 - Screws√
 - Gas fittings√
 - Plumbing fittings√
 - Electric components√
 - Pneumatic fittings√

(Any 3) (3)

2.2.2 Explanation of the method that must be used to relieve internal stresses in brass.

Annealing. ✓ Anneal for 1/2 to 1 hour ✓ at 250–300°C. ✓ (3)

- 2.2.3 The welding method that can be used to join two pieces of brass by using an oxy-acetylene flame.
 - Hard soldering/Brazing√
 - Soft soldering√

(Any 1) (1)

- 2.3 TWO characteristics of bronze.
 - Bronze resists corrosion, especially seawater corrosion.
 - Resists metal fatigue more than steel.
 - Very good conductor of heat.
 - Very good conductor of electricity.
 - It has low friction properties.
 - Good resonant qualities.

(Any 2) (2)

2.4 2.4.1 **A tin/copper alloy.**

Bronze ✓ (1)

- 2.4.2 TWO advantages of a tin/copper alloy compared to pure copper.
 - The alloy becomes harder.
 - It can more easily be casted than copper. ✓ (2)
- 2.5 2.5.1 **TWO** methods that can be used to improve the cohesion properties of an adhesive.
 - Apply a base coat if the surface is very porous.
 - Apply only a thin layer of adhesive.
 - Apply adhesive to both surfaces.

(Any 2) (2)

- 2.5.2 The difference between "duration of cohesion" and "duration of usability".
 - Duration of cohesion refers to the period of time that an adhesive will stick after having been applied. ✓ (1)
 - Duration of usability refers to the period of time a mixed adhesive remains usable before setting.√ (1)
- 2.6 Reasons for using casting resins in underground electrical cable joints.
 - It is watertight√
 - Not a conductor of electricity
 - Tough√

(Any 2) (2)

- 2.7 TWO reasons for coating automobile wiper blades with Teflon.
 - It stops the blades from squeaking as they move back and forth across the windscreen.√
 - It has a low coefficient of friction.
 - It is heat and cold resistant.
 - The wipers slide easily and gently across the glass.√
 - It is self-cleaning.√

(Any 2) (2)

(2)

- 2.8 2.8.1 **TWO** ways of increasing the earth efficiency of the electric fence in poor earth conditions.
 - Increase the number of earth spikes. ✓
 - Run an earth return wire in parallel to the fence line and connect it to earth spikes at regular intervals.√

2.8.2	TWO types of soil that have a negative influence on the ear	th
	return system of an electric fence.	

- Sandy√
- Peat√
- Gravel√
- Very dry soil√
- Snow√
- Frozen ground√

(Any 2) (2)

- 2.8.3 TWO materials that can be used as isolators on an electric fence.
 - Plastic√
 - Bakelite√
 - Ceramic√
 - Porcelain√
 - Rubber√

(Any 2) (2)

2.8.4 The general rule concerning the use of barbed wire as an electric fence material? Provide a reason for this rule.

Barbed wire may not be used in an electrified fence. ✓ Because a person or animal may become entangled on the barbs of the fence and not be able to come free when shocked. ✓

- 2.9 FOUR characteristics of glass fibre.
 - Lightness√
 - Water tight√
 - Non-conductive of electricity✓
 - Can be formed into any shape√
 - Easy to colour√
 - Colour fast√
 - Can be sawn, drilled, and filled✓
 - Toughness√
 - Brittle when struck√
 - Easy repaired when broken or damaged√

(Any 4) (4)

[35]

(2)

QUESTION 3: ENERGY

- 3.1 THREE disadvantages of using wind as a source for producing electric energy.
 - Wind is unreliable.
 - Wind turbines generally produce a lot less energy than fossil fuel power stations.√
 - Wind turbine construction can be very expensive.
 - Costly to surrounding wildlife during the building process.√
 - It causes noise pollution.
 - People usually feel that the countryside should be left intact.√

(Any 3) (3)

- 3.2 What can be done in order for a wind turbine to produce alternating current?
 - Replace the generator with an alternator.
 - Install an inverter/transformer.√

 $(Any 1) \qquad (1)$

- 3.3 Description of the process of producing electricity with a photo voltaic cell.
 - When the photons in the sun's rays hit the solar cells, the electrons absorb the solar energy, transforming them into conduction electrons.✓
 - If the energy of these photons is great enough, then the electrons are able to become free.√
 - An electric charge is then carried through the circuit to the destination.√
- 3.4 TWO appliances that use the heat from solar energy.
 - Solar/sun hot water geyser/tubes√
 - Solar cooker/oven√

(Any 2) (2)

3.5 Discuss the working of a geothermal energy power station

- Deep holes are drilled into the earth to find a geothermal heat source. ✓
- A first pipe is inserted inside the hole which allows hot steam to rise up to the surface.√
- The pressurized steam is then channelled into a turbine which begins to turn under the large force of the steam.√
- This turbine is linked to the generator and so the generator also begins to turn, generating electricity.✓
- Cold water is pumped down a second pipe to the heat source where the water is heated to steam and pumped back to the power station.√

3.6 FOUR reasons for bio-fuel to be known as an environmental friendly fuel.

- It is manufactured from plant and animal waste.
- Biodegradable and does not harm the environment when combusted. ✓
- Lesser carbon emissions. (Less pollution)√
- It is a renewable source of energy.√

(Any 4) (4)

(5)

- 3.7 TWO fuels that are manufactured from organic material.
 - Ethanol√
 - Methanol√
 - Bio-diesel√

(Any 2) (2) **[20]**

4.3.2

process.

To prevent cracks from forming. ✓

(1)

QUE	STION 4	4: SKILLS AND CONSTRUCTION PROCESSES	
4.1	4.1.1	Description of a problem that will occur when a MIG welder is used under windy conditions.	
		 Shielding gas will be blown away. ✓ Arc difficult to strike. ✓ Welding joint will be defective. ✓ Porosity will occur. ✓ (Any 1) 	(1)
	4.1.2	TWO adjustments that can be made when welding with a MIG-welder to prevent the problems caused by windy conditions.	
		 Increase the gas pressure to the welding joint.✓ Decrease the distance between the welding tip and the work piece.✓ Screen of the weld.✓ 	(0)
		(Any 2)	(2)
	4.1.3	THREE adjustments that must be made on the MIG-welder before the welding process commence.	
		 Gas flow.✓ Wire feed speed.✓ Welding current.✓ 	(3)
4.2	4.2.1	The welding defect that is shown in the sketch.	
		Lack of penetration.✓	(1)
	4.2.2	TWO welding measures that can prevent this welding defect from occurring.	
		 Increase the welding current. ✓ Increase the chamfer of the V. ✓ Increase the root face. ✓ Use correct welding technique. ✓ 	
		(Any 2)	(2)
4.3	4.3.1	The type of welding rod that must be used when welding cast iron.	
		Pure nickel✓	(1)

Copyright reserved Please turn over

A reason for pre-heating the cast iron before the welding

- 4.3.3 TWO tasks that must be performed with an angle grinder before the weld is made.
 - Remove rust, grease, dirt and/or any other substances.√
 - Remove the surface layer of the metal.
 - Make a v groove along the joint or crack.✓

(Any 2) (2)

4.4 4.4.1 A drawing of a plan of the burglar proofing that takes the measurements that are provided in consideration.

Marks are allocated as follows:

Measurements.	(1)
Correct number of round bars.	(1)
Scale.	(1)

- Height. 1 200mm and Width. 900mm√
- 8 x Round bars. ✓

• Scale√ (3)

- 4.4.2 A material list of all the metal needed to manufacture the burglar proofing.
 - Steel square tubing at least 4 200mm√
 - Steel round bar at least 7 200mm√

NB. Corresponding with the sketch

(2)

- 4.4.3 Calculation of the total cost of the metal needed.
 - Square Tubing at least 4 200mm X R30√ = R126.00√
 - Round bar at least 7 200mm X R 8,00√ = R73.60√
 Total = R199.60√

NB. Must correspond with sketch

(5)

4.5 FOUR main personal safety hazards that can be encountered when working with a plasma cutting machine and a preventative measure at each.

- Fire hazard. ✓ Any flammable materials should be removed. ✓
- Vision hazard. ✓ Wear proper eye and face protection. ✓
- Breathing hazard. ✓ Wear respiration gear, use exhaust hood or well-ventilated area. ✓
- Electric hazard. ✓ Assure that machine is properly earthed/grounded.
 Prevent short circuits. ✓
- Skin burn. ✓ Face and skin protection. Helmet/Leather gloves/Leather apron and overall. ✓

(Any 8) (8)

- 4.6 Labels A, B, C and D of the oxy-acetylene apparatus.
 - A Cutting, oxygen valve✓
 - B Cutting lever√
 - C Welding nozzle✓
 - D Cutting nozzle√

(4)

[35]

QUESTION 5: TOOLS, IMPLEMENTS AND EQUIPMENT

- 5.1 5.1.1 **TWO** ways in which the mass displacement on the tractor is positively influenced.
 - Lower the connecting point of the drawbar on the tractor.
 - Increase the wheel base of the tractor.√
 - Decrease the pull force on the drawbar.

(Any 2) (2)

- 5.1.2 THREE factors that have an influence on the depth-control system of a tractor.
 - Ploughing depth.
 - Soil resistance.√
 - Forward speed of the tractor.

(3)

- 5.2 5.2.1 Description of the bale forming process in the Vermeer baler up to the point where the binding of the bale takes place.
 - The baler is driven from a power take-off shaft of the tractor.✓
 - The pick-up wheel, which is spring, toothed picks up the hay as the baler moves forward and puts it onto the rollers and belts.√
 - It has a bale forming mechanism that tightly rolls the hay into a round bale.√
 - Baling chamber is initially small but enlarges gradually as the hay is fed into the chamber.√
 - A tensioning system of pulleys belts and chains keeps the tension of the bale constant while it is turning around.√
 - The baling chamber enlarges with the expanding bale.
 - If the bale is large enough ropes are bounded around the bale and the bale is expelled and the proses re-start to form a new bale. ✓

 $(Any 6) \qquad (6)$

- 5.2.2 FIVE procedures that are followed when the baler is stored for a long period at the end of the season.
 - Remove all plant material from the baling chamber.
 - Clean the baler properly.
 - Drain and replace all oil.✓
 - Release the tension on all drive belts.✓
 - Remove all chains, clean and oil them, and replace them. ✓
 - Dismantle all slip clutches, clean them and reassemble them but do not put the springs under tension.√
 - Reduce bale chamber tension completely.✓
 - Cover all unpainted areas with a thin layer of grease.
 - Grease all grease nipples.
 - Store the baler in a dry place under cover. ✓
 - Release the pressure on the tires.

(Any 5) (5)

Copyright reserved

5.2.3 THREE instances where a slip clutch will protect an implement during operation.

- When foreign obstacles are impeding the working of the machine.
- Overloading of machine.
- Faulty components.✓

(3)

5.3 FIVE measures of preventing accidents during the operation of a front loader.

- Never walk or work under a raised loader.
- Raise and lower loader arms slowly and steadily.
- Allow for the extra length of the loader when making turns.
- Never move or swing a load as long as people are in the work area.
- Stay away from the outer edge when working along high banks and slopes.
- Watch for overhead wires and obstacles when you raise the loader.
- Carry the load low to the ground and watch for obstructions on the ground.✓
- Always use the recommended amount of counterweight to ensure good stability.√
- Operate the loader from the operator's seat only.✓
- Move the wheels to the widest recommended settings to increase stability.√
- Lower the loader when parking or servicing.
- Ensure all parked loaders are on a firm, level surface and all safety devices are engaged.√
- Visually check for hydraulic leaks and broken, missing or malfunctioning parts. Make necessary repairs. ✓
- Before disconnecting hydraulic lines, release all hydraulic pressure.
- Be certain anyone operating the loader is aware of safe operating practices and potential hazards.√
- All tractors used to move bales should have roll-over protective structures.
- Tractor operators should utilize the tractor seat belt at all times when operating the tractor, regardless of the task that is being done.√

(Any 5) (5)

5.4 Discussion of the role of the computer and satellite positioning systems in a combine harvester.

- Determine the yield in each specific spot on the land.
- Help to spot problems in the mechanics of the harvester that can prevent loss of grain kernels.√
- Helps to identify nutrient deficiencies in the land.✓
- Helps to identify problem areas in the cultivated field. Over watering, pests, plant density.√

(4)

5.5 Labelled sketches of the THREE types of gears that can be used in gearboxes.

Straight-cut gear. (Spur gear)√

(2)

Helical gear.√

(2)

Double-helical gear. (Herringbone gear)✓

(2)

(3)

5.6 THREE types of tractor power take-off drive shafts.

- Common type PTO shaft.✓
- Live PTO shaft.✓
- Ground wheel driven PTO shaft.
- Independent PTO shaft.

(Any 3)

5.7 THREE examples of running expenses on a farm workshop.

- Repairs√
- Labour√
- Supervising expenses√
- Safety gear/clothing/shoes✓
- First Aid equipment√
- Fuel√

Lubricants√

(Any 3)

(3) **[40]**

QUESTION 6: WATER MANAGEMENT

- 6.1 FIVE disadvantages of a lateral move irrigation system.
 - More labour intensive to operate√
 - Must be moved manually.
 - It is limited in the area and amount of water it can apply.
 - Water delivering hose must be disconnected and re-attached each time it is moved.√
 - Smart controller cannot be used on this system.
 - Water wastage can easily occur.

(Any 5) (5)

- 6.2 6.2.1 THREE reasons for a centre pivot irrigation system to be called a labour saving system.
 - No labourers needed to shift the pipes/system.
 - One-man operation.
 - Automated watering system.(cell phone)✓
 - Fertilizers are applied through system.√

 $(Any 3) \qquad (3)$

- 6.2.2 THREE instances where a safety switch will automatically cut the electricity supply to the electric motors on the wheels of the centre pivot irrigation system.
 - When the wheels gets stuck.✓
 - When the electrical motor that drives the wheel breaks down.✓
 - When the system gets out of line.
 - Main pump stops delivering water.

 $(Any 3) \qquad (3)$

6.2.3 Calculation of the area of the field that must be irrigated with a centre pivot irrigation system by using the formula: Area = $\pi \times r^2$ where $\pi = 3.14$

Area =
$$3.14 \times (200 / 2)^{2}$$

Area = 3.14×100^{2}
Area = $31 \cdot 400 \checkmark m^{2}$ (4)

- 6.3 THREE financial implications of over-irrigation.
 - Water wastage.
 - Excessive electricity used for pumping.√
 - Higher fertilizer costs.√
 - Loss of the value of land. Salination.
 - Loss of income due to lower yields.

(Any 3) (3)

6.4	THRE suppl	E basic types of irrigation timers used for regulating water y.		
	 Ba 	echanical timer. ttery powered timer. ectronic timer. •	(3)	
6.5	6.5.1	Reason for the sludge to remain on the bottom of the septic tank.		
		Because the sludge is heavier than the effluent.✓	(1)	
	6.5.2	The function of the filter in the illustration.		
		To prevent solids from flowing through the outlet pipe.✓	(1)	
	6.5.3	The reason for installing the outlet pipe at a lower level than the inlet pipe.		
		To prevent sewerage from flowing back into the inlet pipe.✓	(1)	
	6.5.4	The reason for placing a lid above both the inlet T and outlet T pipes.		
		To be able to clean the T-joint when blockages occurs.✓	(1)	
	6.5.5	TWO functions of the bacteria in a septic tank.	(1)	
		 To digest all organic waste matter in the system. ✓ To prevent the tank from becoming a holding tank for waste. ✓ To allow natural digestion to occur. ✓ 		
		(Any 2)	(2)	
6.6	Expla	nation of the working of a distiller in a water purification system.		
The water is heated until it becomes a veneur.				

• The water is heated until it becomes a vapour. ✓

The steam cools in a different part of the filter.

The steam then condenses back to water. ✓

(3) [30]

> **TOTAL SECTION B:** 160 **GRAND TOTAL:** 200